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Abstract. A supersymmetry scheme is proposed for nuclear cluster systems. The bosonic sector of the
superalgebra describes the relative motion of the clusters, while its fermionic sector is associated with their
internal structure. An example of core + α configurations is discussed in which the core is a p-shell nucleus
and the underlying superalgebra is U(4|12). The α-cluster states of the nuclei 20Ne and 19F are analyzed
and correlations between their spectra, electric quadrupole transitions, and one-nucleon transfer reactions
are interpreted in terms of U(4|12) supersymmetry.

PACS. 21.60.Fw Models based on group theory – 21.60.Gx Cluster models – 11.30.Pb Supersymmetry

Supersymmetric theories which give a unified treat-
ment of bosonic and fermionic degrees of freedom have
been formulated in several branches of physics. Arguably,
the most successful applications have been found in nu-
clear physics, and among them supersymmetry based on
the interacting boson-fermion model [1,2] is the most
widely known. In this group-theoretical approach the al-
gebras associated with the bosonic and the fermionic com-
ponents of the nuclear systems are unified in a superalge-
bra (or graded Lie algebra) giving rise to correlations be-
tween the spectroscopic properties of neighbouring even-
even, odd-even and odd-odd nuclei. The validity of these
predictions has been confirmed for several examples [2,3].

Other supersymmetric theories in nuclear physics re-
late “deep” and “shallow” real [4] and complex [5] poten-
tials describing the interaction of composite nuclear sys-
tems, attempt to describe identical superdeformed bands
in quartets of neighbouring nuclei [6] and correlate param-
eters of one-pion-exchange potentials [7].

Here, we propose yet another application of supersym-
metry related to clustering, where the relative motion of
the clusters is described by boson (oscillator quantum)
excitations, while the internal structure of the clusters
is interpreted in terms of fermionic degrees of freedom.
An algebraic approach of this type has been formulated
previously in terms of the semimicroscopic algebraic clus-
ter model (SACM) [8], according to which the clusters
are treated in terms of Elliott’s SU(3) model [9], while
the relative motion of the clusters is described in terms
of the SU(3) basis of the vibron model [10]. The SACM
basis is a symmetry-dictated truncation of the complete
SU(3) shell model basis of the whole nucleus and, there-
fore, is free from Pauli-forbidden states and from spuri-
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ous centre-of-mass excitations. At the same time it also
reflects the cluster character of the states. A number of
cluster systems (mainly in the sd-shell region) were ana-
lyzed in terms of the SU(3) limit of the SACM [11,12] and
the (approximate) validity of this symmetry scheme was
confirmed. The dependence of the model parameters on
the mass number was also studied, and it was shown that
the parameters of the SACM Hamiltonian for core + α-
type cluster systems vary smoothly in the A = 16 to 20
region [13]. Similar systematics were also found for the
parameters of the electric quadrupole transition opera-
tor [14].

Our attempt to give a unified treatment of cluster
systems in a more general symmetry-based framework is
also motivated by the fact that some cluster bands of
neighbouring nuclei (e.g., in 20Ne, 19F, 18F, and 18O) are
sometimes interpreted as each other’s correspondents (see,
e.g. [15] and references therein). In the simplest case, we
consider core + α-type cluster systems in which the core
cluster is a p-shell nucleus. The bosonic sector is identified
with the relative motion of the clusters, while the fermions
are defined as holes on the p-shell. The zero-fermion case
then corresponds to a closed-shell core (16O). The addi-
tion of fermions corresponds to a decrease in mass of the
nucleus, while the addition of bosons is equivalent to an
increase in the number of relative excitation quanta. A
physical argument in support of this type of supersymme-
try is that the typical energy of the fermionic and bosonic
excitations is in the same range for these nuclei: The shell
excitation quanta are h̄ω � 13 MeV in this region and the
typical nucleon separation energies are also of this order
for most nuclei close to the valley of stability.

The boson creation and annihilation operators b
†(l,0)l
ml

and b̃
(0,l)l
ml are those of the vibron model [10] (i.e., π and
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σ bosons for l = 1 and 0), where the superscript indi-
cates the SU(3) tensor character (λ, µ). The 16 generators
of UB(4) are constructed as SU(3)-coupled [16] bilinear
products of these operators:

B
(λ,µ)L
ML

(l, l′) = [b†(l,0) × b̃(0,l′)](λ,µ)L
ML

. (1)

Of these, the eight B
(1,1)L
ML

operators (with L = 1 and 2)
generate SUB(3). In what follows, the subscripts B and F
denote quantities in the bosonic and fermionic sectors.

The fermion operators a
†(0,1)lst
mlmsmt and ã

(1,0)lst
mlmsmt , which

create and annihilate a hole on the p-shell, have SU(3)
character (λ, µ) = (0, 1) and (1,0), respectively, and carry
orbital angular momentum l = 1, spin s = 1/2, and isospin
t = 1/2. They describe 3×2×2 = 12 single-particle states
and the bilinear products

A
(λ,µ)LST
MLMSMT

= [a†(0,1) 1
2

1
2 × ã(1,0) 1

2
1
2 ](λ,µ)LST

MLMSMT
(2)

generate UF(12). For S = T = 0 and (λ, µ) = (1, 1) one
gets the 8 generators of the orbital SUF(3) algebra. For
(λ, µ) = (0, 0) the 16 generators of Wigner’s UST

F (4) su-
permultiplet algebra are obtained.

To embed the bosonic and fermionic algebras in a su-
peralgebra, one has to define generators which create a
fermion and annihilate a boson, or vice versa. They can
be constructed as

D
(λ,µ)Lst
MLmsmt

(l′) = [a†(0,1)st × b̃(0,l′)](λ,µ)Lst
MLmsmt

. (3)

Note that the spin-isospin character of the operators (3)
is determined by that of the fermion operators a

†(0,1)lst
mlmsmt .

The inverse of the operators (3) (which create a boson and
annihilate a fermion) can be constructed similarly.

The relevant classification is

U(4|12) ⊃ UB(4) × UF(12)

⊃ SUB(3) × SUF(3) × UST
F (4)

⊃ SU(3) × SUS
F(2) × SUT

F(2)

⊃ SO(3) × SUS
F(2) × SUT

F(2) ⊃ Spin(3) × UT
F (1) , (4)

which is the group structure of the SACM for core + α
cluster systems [13], embedded in U(4|12). The associ-
ated quantum numbers are also those of the SACM [13],
extended with the fermion and total particle numbers NF

and N = NB + NF, which label the representations of
UF(12) and U(4|12). The remaining algebras and the as-
sociated quantum numbers play the same role as in the
SACM [13]: the UB(4), SUB(3), and SUF(3) representa-
tion labels NB = nπ +nσ, nπ, and (λF, µF) denote the to-
tal boson number, the dipole boson number, and Elliott’s
SU(3) labels of the core. The SU(3), UST

F (4), SUS
F (2),

SUT
F (2), SO(3), Spin(3), and UT

F (1) labels (λ, µ), [f1, f2,-
f3, f4], S, T , L, J , and MT stand for the quantum numbers
labelling the unified nucleus in terms of the Elliott’s LS-
coupled SU(3) shell model. As in the SACM, the SU(3)
representations (λ, µ) are obtained from the SU(3) multi-
plication (nπ, 0) × (λF, µF), keeping only those contained

Table 1. Parameters (in MeV) of the Hamiltonian (6) ob-
tained for the 16O + α and the 15N + α systems from separate
(columns 1 and 2) and joint (column 3) fits. Boldface numbers
indicate parameters that were not fitted.

16O + α 15N + α 16O + α and 15N + α

γB 13.185 13.185 13.185
θB −0.3573 −0.8622 −1.0621
δB −0.4611 −0.7210 −0.6565
δ — 0.1784 0.1729
β 0.1441 0.1911 0.1576
ξ — 0.0220 0.0373
ξ′ — 0.8168 0.6638

in the fully antisymmetric SU(3) model space of the uni-
fied nucleus. The number of the dipole bosons nπ, i.e. the
number of harmonic-oscillator quanta in the relative mo-
tion of the clusters, also determines the respective shell
(nh̄ω) of the unified nucleus via n = nπ − nmin

π : states
with nπ < nmin

π are excluded due to the Pauli blocking
between the nucleons of the two clusters [13] (i.e. the Wil-
dermuth condition). For 20Ne ∼ 16O + α nmin

π is 8, which
corresponds to raising the four nucleons of the α-particle
to the empty sd-shell. For 19F ∼ 15N + α, there is a hole
on the p-shell, so in this case nmin

π = 7. Keeping only
the essential quantum numbers, the basis states can be
labelled as

|NNBnπ, (λF, µF); (λ, µ)χLSJMJTMT 〉 . (5)

The total number of particles N is chosen by taking into
account the physical relevance of NF and NB, the number
of fermions and bosons. NF should be at least the maximal
number of holes on the p-shell, 12. With N = 12, the
maximal number of π bosons is also 12 (NB = nπ + nσ).

In what follows, the spectroscopic information on the
α-cluster states of 20Ne and 19F are analyzed in terms of
U(4|12). To generate energy spectra, a Hamiltonian is con-
structed from the Casimir invariants of the algebras in (4).
This Hamiltonian is similar to the one used previously in
the SACM to systematically fit the energy spectra of sev-
eral neighbouring sd-shell nuclei in terms of a core + α
configuration [13] but here constant (mass-independent)
parameters instead of smoothly varying ones are taken:

H = γBnπ + θB(−1)nπ + δBC(2)(SUB(3))

+δC(2)(SU(3))+βL · L+(ξ+(−1)nπξ′)L · S , (6)

where C(2)(..) denotes the Casimir invariant of the rele-
vant SU(3) algebra with eigenvalue λ2+µ2+λµ+3λ+3µ.
Such Hamiltonians can be related to effective nucleon-
nucleon interactions [17] and potential models [18].

Table 1 displays the parameters fitted to 25 and 26 α-
cluster states of 20Ne and 19F. Fits are performed to the
two nuclei separately, and also jointly. First the param-
eters describing the in-band rotational structure of the
bands (β, ξ, ξ′) are determined and next those that fix
the band head energies. The γB parameter is not fitted
but kept at the value of an oscillator constant appropriate
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Fig. 1. Energies of α-cluster states in 20Ne. The model spec-
trum (right panel) has been generated by using the parameters
determined from the joint fit of the 16O + α and the 15N + α
systems. The quantum numbers nπ(λ, µ) which identify the
cluster bands are also displayed.

Fig. 2. Same as fig. 1 for 19F states, now labelled with 2Jπ.

for A = 20 nuclei [13]. A new term θ(−1)nπ is considered
here to account for the relative position of the positive-
and negative-parity band heads. (Parity-dependent inter-
actions are also used in microscopic [19] and phenomeno-
logic [20] cluster models describing the 15N + α system.)
Table 1 demonstrates that the separate and joint fits re-
sult in fairly similar parameter sets. (We note that the
δB-value found for the 16O + α system must be compared
to δB + δ obtained for 15N + α [13].)

The spectra of 16O + α and 15N + α obtained from the
joint fit are shown in figs. 1 and 2, respectively. (Only α-
cluster states of these nuclei are shown: states with a dif-
ferent nature typically appear above Ex � 5 MeV in both
cases.) In assigning the states to α-cluster bands, stan-
dard compilations [21] are used as well as other works that
suggest further band assignments based on experimental
arguments [22,19]. The set of natural-parity states usually
assigned to a Kπ = 1− band in 20Ne [21] is included and
tentatively identified with model states belonging to the
nπ = 11 band. We also note that there are several candi-
dates for the Jπ = 6+ and 8+ states of the 0+

5 α-cluster
band [22], which we associate with model states with
nπ = 12. As a measure for the validity of the supersymme-
try, we calculate (

∑
i |ETh.i − EExp.i|)/

∑
i EExp.i = 0.13,

which is comparable to the value 0.14 obtained for 190Os
and 191Ir assuming U(6|4) supersymmetry [2].

Similarly to the energy spectrum, separate and joint
fits were performed for the electric quadrupole transition
rates for the α-cluster states of 20Ne and 19F [21,19]. This
required the calculation of the matrix elements of

T (E2) = qBQ
(2)
B + qFQ

(2)
F , (7)

where Q
(2)
B and Q

(2)
F are generators of SUB(3) and SUF(3),

respectively. This operator can connect states only within
the same shell. The results are shown in table 2. For 20Ne
the 16O core is inert, has no contribution to the E2 transi-
tion, and, consequently, only qB is fitted, resulting in qB =
2.8504 e fm2. A separate fit to the E2 transitions in 19F
gives qB = 3.5490 e fm2 and qF = 14.5593 e fm2, while a si-
multaneous fit of the two nuclei yields qB = 2.8619 e fm2

and qF = 7.6527 e fm2. Although these two sets of qB

and qF are somewhat different, the corresponding B(E2)-
values differ by less than 5%, except for one case. The
validity of the supersymmetry is indicated by the rate
(
∑

i |B(E2)Th.i − B(E2)Exp.i|)/
∑

i B(E2)Exp.i = 0.35,
which again is comparable to the value 0.39 obtained for
190Os and 191Ir assuming U(6|4) supersymmetry [2].

One-nucleon transfer reactions connect neighbouring
nuclei that are members of the same supermultiplet. Such
transitions are described by operators of the type (3), in
which L and s are coupled to total angular momentum J :

D
(λ,µ)Jt
MJmt

(lLs) =
∑

MLms

〈LMLsms|JMJ 〉D(λ,µ)Lst
MLmsmt

(l) . (8)

One-nucleon spectroscopic factors C2S are available from
the ground state of 20Ne to several states of 19F [23,21].
To calculate the transfer amplitudes, one has to evalu-
ate the matrix elements of (8) with mt = 1/2 between
the nπ(λ, µ)LJ = 8(8, 0)00 20Ne ground state and various
states of 19F. (Transitions to 19Ne states correspond to
mt = −1/2.) In these matrix elements parameters of the
type α

(λ,µ)Jt
mt are associated with each operator (8). It is

encouraging that the experimental compilation [23] con-
tains data for transitions exactly to those α-cluster states
of 19F which can be reached from the ground state of
20Ne with the generators (8). All other α-cluster states can
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Table 2. E2 transitions for 20Ne and 19F. The B(E2)sep are
theoretical values fitted only to the 20Ne or 19F transitions,
while B(E2)jt indicates joint fits of the two systems. Transi-

tions in 19F involve states from the Kπ = 1
2

+

1
, 1

2

−
1

and 1
2

−
3

bands, corresponding to nπ(λ, µ) = 7(6, 0), 8(7,0) and 8(8,1).
In the fitting procedure the weights B(E2)Exp./∆B(E2)Exp.

were used.

Jπ
i (Ex) Jπ

f (Ex) B(E2)Exp. B(E2)sep B(E2)jt

(MeV) (MeV) (e2fm4) (e2fm4) (e2fm4)

2+(1.63) 0+(0) 65.5 ± 3.2 71.50 72.1

4+(4.25) 2+(1.63) 71 ± 6 90.53 91.27

6+(8.78) 4+(4.25) 65 ± 10 76.70 77.32

3−(7.16) 1−(5.79) 161 ± 26 108.64 109.52

5
2

+
(0.20) 1

2

+
(0) 20.93 ± 0.24 29.21 29.31

3
2

+
(1.55) 1

2

+
(0) 20.5 ± 2.1 29.21 29.31

9
2

+
(2.78) 5

2

+
(0.20) 24.7 ± 2.7 34.00 34.11

13
2

+
(4.65) 9

2

+
(2.78) 16.0 ± 2.7 22.13 22.20

7
2

+
(5.46) 5

2

+
(0.20) 6.0 ± 1.5 3.40 3.41

3
2

+
(1.55) 42 ± 12 30.60 30.70

9
2

+
(2.78) 9 ± 6 3.29 3.30

5
2

−
(1.35) 1

2

−
(0.11) 60 ± 9 39.55 37.47

3
2

−
(1.46) 1

2

−
(0.11) 75 ± 33 43.30 41.02

3
2

−
(1.46) 30+27

−12 50.85 48.18

9
2

−
(4.03) 5

2

−
(1.35) 84 ± 18 44.52 42.18

11
2

−
(8.95) 7

2

−
(4.00) 24.4 ± 3.6 47.21 44.74

9
2

−
(4.03) 1.5+2.7

−1.2 2.52 2.39

3
2

−
(6.79) 1

2

−
(0.11) 2.1 ± 0.9 7.20 1.36

be reached only using higher-order operators. The opera-
tors (8) with (λ, µ) = (0, 2) annihilate one relative excita-
tion oscillator quantum and lead to the Jπ = 1

2

+, 3
2

+, and
5
2

+ ground-band states of 19F with (λ, µ) = (6, 0). Since

each transition contains a separate parameter α
(0,2)J 1

2
1
2

, no
correlation between the data can be identified. Transitions
in which the number of relative oscillator quanta nπ is
left unchanged can lead to the Jπ = 1

2

− and 3
2

− states
of the (λ, µ) = (7, 0) and (8,1) bands. Now correlations
can be found between the transitions to states that have
the same spin J but different (λ, µ). Data are available for
both states only for Jπ = 3

2

−, and the relative intensity
of the transition to the Ex = 6.69 and 1.46 MeV state is
3.2. The prediction 2.75 based on U(4|12) supersymmetry
is fairly close to this value.

In summary, we conclude that although there are few
criteria by which the validity of the present supersymme-
try can be tested, these all seem to support the idea of cor-
relating different cluster systems under this scheme. Cal-
culations of energy spectra and electric quadrupole transi-
tions of the 16O + α and 15N + α systems show that essen-
tially the same results are obtained from fits in which both

nuclei are included, and those in which the fits are done
separately. Correlations are also found for one-nucleon
transfer data between α-cluster states of the two nuclei.

Further tests of this type of supersymmetry are possi-
ble for other cluster systems, for instance, 15O + α (with
NF = 1), 14C + α, 14N + α, and 14O + α (with NF =
2). Construction of other cluster supersymmetry schemes
with similar nature can also be envisaged.
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